แรงกระตุ้นตอบสนอง: ความหมายและคุณสมบัติ

สารบัญ:

แรงกระตุ้นตอบสนอง: ความหมายและคุณสมบัติ
แรงกระตุ้นตอบสนอง: ความหมายและคุณสมบัติ
Anonim

โมเมนตัมเป็นฟังก์ชันที่ไม่มีเวลารองรับ ด้วยสมการเชิงอนุพันธ์ จะใช้เพื่อให้ได้การตอบสนองตามธรรมชาติของระบบ การตอบสนองตามธรรมชาติของมันคือปฏิกิริยาต่อสถานะเริ่มต้น การตอบสนองที่บังคับของระบบคือการตอบสนองต่ออินพุตโดยละเลยการก่อตัวหลัก

แรงกระตุ้นตอบสนอง
แรงกระตุ้นตอบสนอง

เนื่องจากฟังก์ชันอิมพัลส์ไม่มีเวลารองรับ จึงเป็นไปได้ที่จะอธิบายสถานะเริ่มต้นใดๆ ที่เกิดขึ้นจากปริมาณที่ถ่วงน้ำหนักที่สอดคล้องกัน ซึ่งเท่ากับมวลของวัตถุที่เกิดจากความเร็ว ตัวแปรอินพุตตามอำเภอใจใดๆ สามารถอธิบายเป็นผลรวมของแรงกระตุ้นที่ถ่วงน้ำหนักได้ ด้วยเหตุนี้ สำหรับระบบเชิงเส้นตรง จึงอธิบายว่าเป็นผลรวมของการตอบสนองที่ "เป็นธรรมชาติ" ต่อสถานะที่แสดงโดยปริมาณที่พิจารณา นี่คือสิ่งที่อธิบายอินทิกรัล

ตอบสนองขั้นตอนแรงกระตุ้น

เมื่อคำนวณการตอบสนองของแรงกระตุ้นของระบบ โดยพื้นฐานแล้วการตอบสนองตามธรรมชาติ หากมีการตรวจสอบผลรวมหรืออินทิกรัลของการบิดเบี้ยว การเข้าสู่สถานะจำนวนหนึ่งนี้จะได้รับการแก้ไขโดยพื้นฐาน แล้วการตอบสนองที่เกิดขึ้นในขั้นต้นต่อสถานะเหล่านี้ ในทางปฏิบัติ สำหรับฟังก์ชันอิมพัลส์ เราสามารถยกตัวอย่างของการชกมวยที่ใช้เวลาสั้นมาก และหลังจากนั้นจะไม่มีการชกมวยครั้งต่อไป ในทางคณิตศาสตร์ จะแสดงอยู่ที่จุดเริ่มต้นของระบบจริงเท่านั้น โดยมีแอมพลิจูดสูง (อนันต์) ณ จุดนั้น แล้วค่อยๆ จางหายไปอย่างถาวร

ฟังก์ชันแรงกระตุ้นถูกกำหนดดังนี้: F(X)=∞∞ x=0=00 โดยที่คำตอบคือคุณลักษณะของระบบ ฟังก์ชันที่เป็นปัญหาจริง ๆ แล้วเป็นพื้นที่ของพัลส์สี่เหลี่ยมที่ x=0 ซึ่งความกว้างจะถือว่าเป็นศูนย์ ด้วย x=0 ความสูง h และความกว้าง 1/h คือจุดเริ่มต้นที่แท้จริง ทีนี้ หากความกว้างนั้นไม่สำคัญ กล่าวคือ เกือบจะเป็นศูนย์ นี่จะทำให้ความสูงที่สอดคล้องกัน h ของขนาดไปเป็นอนันต์ สิ่งนี้กำหนดฟังก์ชันให้สูงอย่างไม่สิ้นสุด

การตอบสนองต่อแรงกระตุ้นของวงจร
การตอบสนองต่อแรงกระตุ้นของวงจร

ผลตอบรับการออกแบบ

การตอบสนองของแรงกระตุ้นมีดังนี้: เมื่อใดก็ตามที่สัญญาณอินพุตถูกกำหนดให้กับระบบ (บล็อก) หรือตัวประมวลผล สัญญาณจะแก้ไขหรือประมวลผลเพื่อให้เอาต์พุตแจ้งเตือนที่ต้องการขึ้นอยู่กับฟังก์ชันการถ่ายโอน การตอบสนองของระบบช่วยในการกำหนดตำแหน่งพื้นฐาน การออกแบบ และการตอบสนองของเสียงใดๆ ฟังก์ชันเดลต้าเป็นฟังก์ชันทั่วไปที่สามารถกำหนดเป็นขีดจำกัดของคลาสของลำดับที่ระบุได้ หากเรายอมรับการแปลงฟูริเยร์ของสัญญาณพัลส์ก็ชัดเจนว่ามันคือสเปกตรัม DC ในโดเมนความถี่ ซึ่งหมายความว่าฮาร์โมนิกทั้งหมด (ตั้งแต่ความถี่ถึง +อินฟินิตี้) มีส่วนสนับสนุนสัญญาณที่เป็นปัญหา สเปกตรัมตอบสนองความถี่บ่งชี้ว่าระบบนี้จัดลำดับของการเพิ่มหรือลดทอนความถี่นี้ หรือระงับส่วนประกอบที่ผันผวนเหล่านี้ เฟสหมายถึงกะที่มีให้สำหรับฮาร์โมนิกความถี่ต่างๆ

ดังนั้น การตอบสนองของสัญญาณบ่งชี้ว่ามีช่วงความถี่ทั้งหมด ดังนั้นจึงใช้ในการทดสอบระบบ เพราะหากใช้วิธีการแจ้งเตือนแบบอื่น มันจะไม่มีชิ้นส่วนทางวิศวกรรมที่จำเป็นทั้งหมด ดังนั้นคำตอบจะไม่ปรากฏให้เห็น

ปฏิกิริยาของอุปกรณ์ต่อปัจจัยภายนอก

เมื่อประมวลผลการแจ้งเตือน การตอบสนองของอิมพัลส์คือเอาต์พุตเมื่อแสดงโดยอินพุตสั้นๆ ที่เรียกว่าพัลส์ โดยทั่วไปแล้ว มันคือปฏิกิริยาของระบบไดนามิกใดๆ เพื่อตอบสนองต่อการเปลี่ยนแปลงภายนอกบางอย่าง ในทั้งสองกรณี การตอบสนองต่อแรงกระตุ้นจะอธิบายฟังก์ชันของเวลา (หรืออาจเป็นตัวแปรอิสระอื่นๆ ที่กำหนดพฤติกรรมแบบไดนามิก) มันมีแอมพลิจูดอนันต์ที่ t=0 และศูนย์ทุกที่เท่านั้น และตามชื่อของมัน โมเมนตัม i, e ออกฤทธิ์ในช่วงเวลาสั้น ๆ

เมื่อนำไปใช้ ระบบใดๆ ก็ตามมีฟังก์ชันถ่ายโอนอินพุตไปยังเอาต์พุตที่อธิบายว่าเป็นตัวกรองที่ส่งผลต่อเฟสและค่าข้างต้นในช่วงความถี่ การตอบสนองความถี่นี้ด้วยโดยใช้วิธีแรงกระตุ้น วัดหรือคำนวณแบบดิจิทัล ในทุกกรณี ระบบไดนามิกและคุณลักษณะอาจเป็นวัตถุจริงหรือสมการทางคณิตศาสตร์ที่อธิบายองค์ประกอบดังกล่าว

แรงกระตุ้นตอบสนอง
แรงกระตุ้นตอบสนอง

คำอธิบายทางคณิตศาสตร์ของแรงกระตุ้น

เนื่องจากฟังก์ชันที่พิจารณามีความถี่ทั้งหมด เกณฑ์และคำอธิบายจึงกำหนดการตอบสนองของการสร้างค่าคงที่ตามเวลาเชิงเส้นสำหรับปริมาณทั้งหมด ในทางคณิตศาสตร์ การอธิบายโมเมนตัมนั้นขึ้นอยู่กับว่าระบบถูกสร้างแบบจำลองตามเวลาที่ไม่ต่อเนื่องหรือต่อเนื่องกัน สามารถสร้างแบบจำลองเป็นฟังก์ชัน Dirac delta สำหรับระบบเวลาต่อเนื่อง หรือเป็นปริมาณ Kronecker สำหรับการออกแบบการดำเนินการที่ไม่ต่อเนื่อง อย่างแรกคือกรณีสุดโต่งของพัลส์ที่มีเวลาสั้นมากในขณะที่ยังคงรักษาพื้นที่หรืออินทิกรัลของมันไว้ แม้ว่าสิ่งนี้จะไม่สามารถทำได้ในระบบจริง แต่ก็เป็นการสร้างอุดมคติที่มีประโยชน์ ในทฤษฎีการวิเคราะห์ฟูริเยร์ พัลส์ดังกล่าวมีส่วนเท่ากันของความถี่การกระตุ้นที่เป็นไปได้ทั้งหมด ทำให้เป็นโพรบทดสอบที่สะดวก

ระบบใดๆ ในคลาสขนาดใหญ่ที่เรียกว่าค่าคงที่เวลาเชิงเส้น (LTI) จะได้รับการอธิบายโดยสมบูรณ์โดยการตอบสนองของอิมพัลส์ นั่นคือ สำหรับอินพุตใดๆ เอาต์พุตสามารถคำนวณได้ในแง่ของอินพุตและแนวคิดทันทีของปริมาณที่เป็นปัญหา คำอธิบายแรงกระตุ้นของการแปลงเชิงเส้นคือรูปภาพของฟังก์ชัน Dirac delta ภายใต้การแปลง ซึ่งคล้ายกับโซลูชันพื้นฐานของตัวดำเนินการส่วนต่างด้วยอนุพันธ์บางส่วน

คุณสมบัติของโครงสร้างแรงกระตุ้น

มักจะง่ายกว่าในการวิเคราะห์ระบบโดยใช้การตอบสนองของแรงกระตุ้นในการถ่ายโอนมากกว่าการตอบสนอง ปริมาณที่พิจารณาคือการแปลงลาปลาซ การปรับปรุงเอาต์พุตของระบบของนักวิทยาศาสตร์สามารถกำหนดได้โดยการคูณฟังก์ชันการถ่ายโอนโดยการดำเนินการอินพุตนี้ในระนาบเชิงซ้อน หรือที่เรียกว่าโดเมนความถี่ การแปลง Laplace แบบผกผันของผลลัพธ์นี้จะให้เอาต์พุตโดเมนเวลา

การกำหนดเอาท์พุตโดยตรงในโดเมนเวลาจำเป็นต้องมีการบิดอินพุตที่มีการตอบสนองต่อแรงกระตุ้น เมื่อทราบฟังก์ชันการถ่ายโอนและการแปลง Laplace ของอินพุต การดำเนินการทางคณิตศาสตร์ที่ใช้กับสององค์ประกอบและดำเนินการกับองค์ประกอบที่สามอาจซับซ้อนกว่า บางคนชอบทางเลือกของการคูณสองฟังก์ชันในโดเมนความถี่

ลักษณะการถ่ายโอนแรงกระตุ้น
ลักษณะการถ่ายโอนแรงกระตุ้น

การประยุกต์ใช้การตอบสนองต่อแรงกระตุ้นจริง

ในระบบเชิงปฏิบัติ เป็นไปไม่ได้ที่จะสร้างแรงกระตุ้นที่สมบูรณ์แบบสำหรับการป้อนข้อมูลสำหรับการทดสอบ ดังนั้นบางครั้งสัญญาณสั้นจึงถูกใช้เป็นค่าประมาณของขนาด โดยมีเงื่อนไขว่าพัลส์สั้นเพียงพอเมื่อเทียบกับการตอบสนอง ผลลัพธ์จะใกล้เคียงกับของจริงตามทฤษฎี อย่างไรก็ตาม ในหลายระบบ รายการที่มีพัลส์แรงที่สั้นมากอาจทำให้การออกแบบไม่เป็นเชิงเส้น ดังนั้นจึงถูกขับเคลื่อนด้วยลำดับสุ่มหลอกแทน ดังนั้นการตอบสนองของแรงกระตุ้นจะถูกคำนวณจากอินพุตและสัญญาณเอาท์พุต การตอบสนองซึ่งถูกมองว่าเป็นฟังก์ชันของ Green ถือได้ว่าเป็น "อิทธิพล" - จุดเริ่มต้นส่งผลต่อผลลัพธ์อย่างไร

ลักษณะของอุปกรณ์พัลส์

Speakers เป็นแอปพลิเคชั่นที่แสดงแนวคิด (มีการพัฒนาการทดสอบการตอบสนองต่อแรงกระตุ้นในปี 1970) ลำโพงประสบกับความไม่ถูกต้องของเฟส ซึ่งเป็นข้อบกพร่องที่ตรงกันข้ามกับคุณสมบัติที่วัดได้อื่นๆ เช่น การตอบสนองความถี่ เกณฑ์ที่ยังไม่เสร็จนี้เกิดจาก (เล็กน้อย) โยกเยก/อ็อกเทฟ ซึ่งส่วนใหญ่เป็นผลมาจากการพูดคุยข้ามมิติแบบพาสซีฟ (โดยเฉพาะตัวกรองลำดับที่สูงกว่า) แต่ยังเกิดจากเสียงสะท้อน ปริมาตรภายใน หรือการสั่นสะเทือนของแผงตัวถัง การตอบสนองคือการตอบสนองของแรงกระตุ้นที่จำกัด การวัดนี้เป็นเครื่องมือที่ใช้ในการลดเสียงสะท้อนผ่านการใช้วัสดุที่ได้รับการปรับปรุงสำหรับกรวยและตู้ ตลอดจนการเปลี่ยนครอสโอเวอร์ของลำโพง ความจำเป็นในการจำกัดแอมพลิจูดเพื่อรักษาความเป็นเส้นตรงของระบบได้นำไปสู่การใช้อินพุต เช่น ลำดับสุ่มเทียมที่มีความยาวสูงสุด และความช่วยเหลือในการประมวลผลคอมพิวเตอร์เพื่อให้ได้ข้อมูลและข้อมูลที่เหลือ

การตอบสนองของแรงกระตุ้นที่จำกัด
การตอบสนองของแรงกระตุ้นที่จำกัด

การเปลี่ยนแปลงทางอิเล็กทรอนิกส์

การวิเคราะห์การตอบสนองด้วยแรงกระตุ้นเป็นองค์ประกอบหลักของเรดาร์ ภาพอัลตราซาวนด์ และการประมวลผลสัญญาณดิจิทัลในหลายพื้นที่ ตัวอย่างที่น่าสนใจคือการเชื่อมต่ออินเทอร์เน็ตบรอดแบนด์ บริการ DSL ใช้เทคนิคการปรับสมดุลแบบปรับได้เพื่อช่วยชดเชยความผิดเพี้ยนและสัญญาณรบกวนที่แนะนำโดยสายโทรศัพท์ทองแดงที่ใช้ในการให้บริการ พวกเขาขึ้นอยู่กับวงจรที่ล้าสมัยซึ่งการตอบสนองของแรงกระตุ้นซึ่งทำให้เป็นที่ต้องการอย่างมาก มันถูกแทนที่ด้วยความครอบคลุมที่ทันสมัยสำหรับการใช้อินเทอร์เน็ต โทรทัศน์ และอุปกรณ์อื่นๆ การออกแบบขั้นสูงเหล่านี้มีศักยภาพในการปรับปรุงคุณภาพ โดยเฉพาะอย่างยิ่งเมื่อโลกทุกวันนี้เชื่อมต่ออินเทอร์เน็ต

ระบบควบคุม

ในทฤษฎีการควบคุม การตอบสนองต่อแรงกระตุ้นคือการตอบสนองของระบบต่ออินพุต Dirac delta สิ่งนี้มีประโยชน์เมื่อวิเคราะห์โครงสร้างแบบไดนามิก การแปลง Laplace ของฟังก์ชันเดลต้ามีค่าเท่ากับหนึ่ง ดังนั้น การตอบสนองของแรงกระตุ้นจึงเทียบเท่ากับการแปลง Laplace ผกผันของฟังก์ชันการถ่ายโอนระบบและตัวกรอง

แอปพลิเคชั่นเสียงและอคูสติก

ที่นี่ การตอบสนองต่อแรงกระตุ้นทำให้คุณสามารถบันทึกลักษณะเสียงของสถานที่ เช่น คอนเสิร์ตฮอลล์ มีแพ็คเกจหลากหลายพร้อมการแจ้งเตือนสำหรับสถานที่เฉพาะ ตั้งแต่ห้องเล็กไปจนถึงคอนเสิร์ตฮอลล์ขนาดใหญ่ การตอบสนองของแรงกระตุ้นเหล่านี้สามารถใช้ในแอปพลิเคชันการสั่นของเสียงสะท้อนเพื่อให้สามารถใช้คุณลักษณะทางเสียงของตำแหน่งเฉพาะกับเสียงเป้าหมายได้ อันที่จริงแล้ว มีการวิเคราะห์ การแยกการแจ้งเตือนและเสียงต่างๆ ผ่านตัวกรอง การตอบสนองต่อแรงกระตุ้นในกรณีนี้สามารถให้ทางเลือกแก่ผู้ใช้ได้

ลักษณะของกระแสอิมพัลส์
ลักษณะของกระแสอิมพัลส์

องค์ประกอบทางการเงิน

ในเศรษฐกิจมหภาควันนี้ฟังก์ชันการตอบสนองด้วยแรงกระตุ้นถูกใช้ในการสร้างแบบจำลองเพื่ออธิบายว่ามันตอบสนองอย่างไรเมื่อเวลาผ่านไปต่อปริมาณภายนอก ซึ่งนักวิจัยทางวิทยาศาสตร์มักเรียกว่าการกระแทก และมักจะจำลองในบริบทของการถดถอยเวกเตอร์อัตโนมัติ แรงกระตุ้นที่มักถูกมองว่าเป็นปัจจัยภายนอกจากมุมมองของเศรษฐกิจมหภาค ได้แก่ การเปลี่ยนแปลงการใช้จ่ายของรัฐบาล อัตราภาษีและพารามิเตอร์นโยบายการเงินอื่นๆ การเปลี่ยนแปลงฐานการเงินหรือปัจจัยอื่นๆ ของนโยบายเงินทุนและสินเชื่อ การเปลี่ยนแปลงในการผลิตหรือปัจจัยทางเทคโนโลยีอื่นๆ การเปลี่ยนแปลงในการตั้งค่าเช่นระดับของความอดทน ฟังก์ชันตอบสนองต่อแรงกระตุ้นอธิบายการตอบสนองของตัวแปรเศรษฐกิจมหภาคภายนอก เช่น ผลผลิต การบริโภค การลงทุน และการจ้างงานในช่วงที่เกิดภาวะช็อกและอื่นๆ

เฉพาะโมเมนตัม

การตอบสนองของแรงกระตุ้นของระบบ
การตอบสนองของแรงกระตุ้นของระบบ

โดยพื้นฐานแล้ว การตอบสนองในปัจจุบันและแรงกระตุ้นนั้นสัมพันธ์กัน เนื่องจากแต่ละสัญญาณสามารถสร้างแบบจำลองเป็นอนุกรมได้ เนื่องจากการมีอยู่ของตัวแปรบางอย่างและไฟฟ้าหรือเครื่องกำเนิดไฟฟ้า หากระบบเป็นทั้งเชิงเส้นและชั่วขณะ การตอบสนองของเครื่องมือต่อการตอบสนองแต่ละรายการสามารถคำนวณได้โดยใช้การสะท้อนกลับของปริมาณที่เป็นปัญหา

แนะนำ: